top of page
Digite um trecho da questão com 3 até 10 palavras. Evite equações ou fórmulas. Clique em 'Buscar Questão'.
Específica Title
Específica Title
Específica Title
Vestibular
Questão
Nível
Errou
Acertou
Ainda não fez
Avisos
O gabarito dessa questão ainda não foi cadastrado em nosso banco de dados.
Desculpe-nos pelo transtorno.

#1: Para verificar a afirmação 01, comece calculando o produto das matrizes A e B na ordem dada
![CONSIDERE AS MATRIZES QUADRADAS
A = \LEFT[\BEGIN{ARRAY}{CC}
1 & 1 \\
0 & 1
\END{ARRAY}\RIGHT]
E
B = \LEFT[\BEGIN{ARRAY}{CC}
1 & 0 \\
1 & 1
\END{ARRAY}\RIGHT]
DE ORDEM 2 E AS MATRIZES QUADRADAS
C = (C_{IJ})
E
D = (D_{IJ})
DE ORDEM N CUJAS LEIS DE FORMACAO SAO DADAS POR:
C_{IJ} =
\BEGIN{CASES}
I + J, & \TEXT{SE } I = J \\
0, & \TEXT{SE } I \NEQ J
\END{CASES}
\QUAD \TEXT{E} \QUAD
D_{IJ} =
\BEGIN{CASES}
I, & \TEXT{SE } I = J \\
0, & \TEXT{SE } I \NEQ J
\END{CASES}
ASSINALE O QUE FOR CORRETO.
\BEGIN{ITEMIZE}
\ITEM[01)] A \CDOT B = B \CDOT A.
\ITEM[02)] A MATRIZ A^2 E IGUAL A TRANSPOSTA DA MATRIZ B^2.
\ITEM[04)] C = 2D.
\ITEM[08)] A SOMA DOS ELEMENTOS DA DIAGONAL PRINCIPAL DE C E IGUAL A N^2 + N.
\ITEM[16)] PARA TODO N, \DET(C) = 2^N.
\END{ITEMIZE}](https://static.wixstatic.com/media/4ca89d_b078beb8283e4cc8aa0c70ce04ef0cf7~mv2.jpg/v1/fill/w_733,h_1036,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/4ca89d_b078beb8283e4cc8aa0c70ce04ef0cf7~mv2.jpg)
bottom of page